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Abstract—Level-index arithmetic appeared in the 1980s. One
of its principal purposes is to abolish the issues caused by
underflows and overflows in floating point. However, level-index
arithmetic does not expand the set of numbers but spaces out the
numbers of large magnitude even more than floating-point rep-
resentations to move the infinities further away from zero: gaps
between numbers on both ends of the range become very large.
We revisit level index by presenting a custom precision simulator
in MATLAB. This toolbox is useful for exploring performance
of level-index arithmetic in research projects, such as using 8-bit
and 16-bit representations in machine learning algorithms where
narrow bit-width is desired but overflow/underflow of floating-
point representations causes difficulties.

Index Terms—level-index arithmetic, floating-point arithmetic,
number systems

I. INTRODUCTION

In a level-index (LI) arithmetic of Clenshaw and Olver [1]
a positive number x ∈ R is represented with l ∈ N (a level)
and f ∈ [0, 1) (an index) as

x = ee
..
.e

f

. (1)

Here
f = ln(ln(· · · ln(x) · · · )). (2)

The exponentiation or the logarithm are taken l times. Num-
bers x < 1 could be represented by taking l = 0 and f = x,
but more of them can be represented by the symmetric level-
index (SLI) system by Clenshaw and Turner [3] which adds a
reciprocal sign to (1) used for x < 1. The term “symmetric”
presumably refers to the numbers of values represented in the
ranges x ∈ (0, 1) and x ∈ (1,+∞) being the same; the
ordinary LI arithmetic that does not use the reciprocal sign
is also symmetric, but with respect to zero when taking into
account the negative axis.

Formally, a nonzero real number x in the SLI systems
is represented by a number ζ = l + f and the following
relations [3]:

x = s(x)ϕ(ζ)r(x), (3)

where s(x) = ±1 is the sign of x, r(x) = ±1 is the reciprocal
sign defined by

r(x) =

{
+1, if |x| ≥ 1,

−1, if |x| < 1,
(4)

and

ϕ(ζ) =

{
ζ, if 0 ≤ ζ < 1,

eϕ(ζ−1), if ζ ≥ 1.
(5)

Here (5) computes (1) given a LI number. Note that (5)
produces ⌊ζ⌋ = l exponentials, with the final exponent
ζ − ⌊ζ⌋ = f as required by the definition of the LI systems.

To construct ζ Clenshaw and Olver [1] propose

Ψ(x) =

{
x, if 0 ≤ x < 1,

1 + Ψ(ln(x)), if x ≥ 1,
(6)

which is similar to (2) except that the level is also included
with 1 being added on every recursive step.

Note that precision p does not come in anywhere in this
definition, unlike the floating-point representation that usually
contains p. Of course, p plays a role in implementing the
quantisation of the index f .

A. Previous results

Turner [13] demonstrates a Pascal software package that
simulates a SLI format with 3 level bits and 27 index bits.

Lozier and Olver [10], [8] show that LI system is closed
which means that, unlike in floating point, it is impossible to
produce numbers that lie outside the representable range with
the basic operations, except division by zero. The authors [10,
Sec. 3] also explain that levels beyond 6 bits will not be
entered in practice by addition, subtraction, multiplication and
division, and therefore that 3 bits are enough for the level.
Furthermore, Olver [10, Sec. 4] writes that LI systems are
free from “wobbling precision”, a feature of floating point
whereby a real number x rounded to a floating-point system
with precision p is fl(x) = x(1 + δ) and the error δ can be
anywhere between −2−p and 2−p. Olver also mentions that
LI is more precise than floating-point for x < 211 in 32 bits
and for x < 244 in 64 bits, but less precise beyond x > 218

and x > 270 for 32- and 64-bit representations, respectively.
Demmel [4] argues that LI and other similar arithmetics

such as the one by Iri and Matsui [9] that aim to remove the
possibility of overflow, overall do not result in improvements
since more care is needed when computing with very big
highly inaccurate quantities. This is in contrast with floating
point that returns infinities allowing to detect overflows.

Shen and Turner [12] explore a hybrid floating point and LI
arithmetic. They propose to do most computations in standard
binary64 [6] arithmetic, but switch to LI once certain bounds
are reached on the input arguments to the four basic arithmetic
operations.

Kwak and Swartzlander [7] propose a hardware implemen-
tation of LI arithmetic and demonstrate area reduction with a
minor increase in the timing of the circuit, compared with the
previous approach by Olver and Turner [11].
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Fig. 1. Layout of a possible 16-bit SLI encoding: sli-3.11.

II. THE ENCODING OF LEVEL-INDEX NUMBERS

We need to encode the LI numbers of (3) in a limited
precision word length for use on the digital computers. A sign
s(x) can be one bit, the reciprocal sign r(x) can also be one
bit, the level l, the authors recommend, does not have to be
more than 3 bits to “virtually abolish overflow from everyday
work” [1], and the index f can be as precise as possible and
represented in fixed point. We will refer to a sli encoding with
a k-bit level and a p-bit index as sli-k.p.

Figure 1 shows an encoding of a 16-bit binary SLI represen-
tation with a 3-bit level and an 11-bit index. We have placed
the reciprocal sign r(x) to the left of the level. This way the
sequence of representable numbers starts from the smallest
number, representing r(x) = −1 by setting the reciprocal bit
to zero. Then, when the encoding bit pattern is incremented
by 1, it transitions through the levels and eventually r(x) = 1
is set when the representation for number 1 is reached.

III. SMALL LEVEL-INDEX SYSTEMS

Here we compare an unsigned 5-bit SLI representation with
an unsigned 5-bit binary floating-point (“toy”) system used for
demonstration by Higham [5]. In the interest of saving space
we don’t include the negative axes—the representations are
symmetrical with respect to zero. In floating point, numbers
are represented with ±βe−p+1 × m. Here β is a base, p
is precision, and emin ≤ e ≤ emax is the exponent. The
exponent is usually encoded with a bias: E = e + emax. In
IEEE 754 [6] emin = 1 − emax. The significand m satisfies
0 ≤ m ≤ βp − 1, but the normalized nonzero numbers are
assumed to have m ≥ βp−1 whilst the subnormal values
have m ≤ βp−1 − 1 and a fixed exponent e = emin.
Stored significand M omits the most significant bit of m. We
will assume the IEEE 754 floating-point encoding, including
representing infinities, subnormals and not-a-number (NaNs).

For the 5-bit SLI representation, we consider 1 and 2 bits for
the level. Since the encoding for level zero is not required, we
use the level encoding 00 for representing level 1 and therefore
have levels 1 to 4. Similarly for 1-bit level SLI representations:
0 encodes level 1 and 1 encodes level 2. The authors of LI
mention that it could instead be used for representing special
values [3], perhaps values equivalent to NaNs or infinities in
floating point. For the reciprocal bit sign, we use 0 for r(x) =
−1 and 1 for r(x) = 1 and store it on the left of the level bits
in order to have small values represented by the lower half of
the set of representable binary patterns.

Figure 2 shows the layouts of 5-bit floating-point represen-
tation and two different 5-bit SLI representations. Table I lists
the 32 possible values representable by the three systems. The
following observations can be made from this table.
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Fig. 2. Layout of an unsigned 5-bit toy floating-point system [5] (top) and
two unsigned SLI systems: sli-1.3 (bottom left) and sli-2.2 (bottom right).

• SLI systems have two representations for 1 and no
representation for 0. One of the bit patterns for 1 could
be used for representing zero. We have used all zeros to
represent the zero.

• SLI systems represent decreasing numbers with the in-
creasing binary patterns from 00000 to 01111, which
happens because of the reciprocal rule for representing
small values below 1. This could be changed by inverting
the index bits on conversion to and from, if r(x) = 0.
Then 00000 could be used to represent the zero, with the
following number 00001, when inverted, representing the
smallest representable nonzero number. We did not im-
plement this in v0.1 of the toolbox to keep the encoding
closer to the definition (3).

• The SLI system with the 1-bit level does not offer a wider
dynamic range than the 5-bit floating-point system.

• The SLI system with the 2-bit level offers a wider
dynamic range than the binary64 [6] representation.

IV. ARITHMETIC WITH LEVEL-INDEX NUMBERS

The algorithms for LI arithmetic are shown by Clen-
shaw and Olver [2] while the modifications required for the
SLI systems are investigated by Clenshaw and Turner [3].
We provide key highlights to demonstrate what is involved in
implementing LI arithmetic; readers should refer to Clenshaw,
Olver, and Turner for complete algorithms.

Take X = l + f , Y = m + g, Z = n + h, X ≥ Y ≥ 0,
the LI numbers with corresponding levels l, m and n, indices
f , g and h, and ϕ(X) ± ϕ(Y ) = ϕ(Z). In the standard LI
arithmetic, addition and subtraction operations require three
sequences aj = 1/ϕ(X − j), bj = ϕ(Y − j)/ϕ(X − j), and
cj = ϕ(Z − j)/ϕ(X − j). Sequences terminate as soon as
cj < aj , and additional calculations on cj provide the level
and index values of the final result [2] (rounding or chopping
to required precision). These sequences are short because for
aj and cj j goes up to the level of X while for bj up to the
level of Y . Clenshaw and Olver [2] provide

al−1 = e−f , aj−1 = e−1/aj ,

bm−1 = am−1e
g, bj−1 = e−(1−bj)/aj (if m ≥ 1), and

c0 = 1− b0, cj = 1 + aj ln(cj−1).

If m = 0, we compute b0 = a0g instead of the expression
above. For addition c0 = 1 + b0. The sequence cj is stopped



TABLE I
ALL QUANTITIES ENCODED IN THE TOY 5-BIT FLOATING-POINT AND SLI

SYSTEMS OF FIGURE 2.

FP sli-1.3 sli-2.2

00000 0 (e0)−1 = 1 (e0)−1 = 1
00001 0.0625 (e0.125)−1 ≈ 0.8825 (e0.25)−1 ≈ 0.7788
00010 0.125 (e0.25)−1 ≈ 0.7788 (e0.5)−1 ≈ 0.6065
00011 0.1875 ∼ 0.6873 ∼ 0.4724

00100 0.25 ∼ 0.6065 (ee
0
)−1 ≈ 0.3679

00101 0.3125 ∼ 0.5353 ∼ 0.2769
00110 0.375 ∼ 0.4724 ∼ 0.1923
00111 0.4375 ∼ 0.4169 ∼ 0.1204

01000 0.5 (ee
0
)−1 ≈ 0.3679 (ee

e0

)−1 ≈ 0.06599

01001 0.625 (ee
0.125

)−1 ≈ 0.322 ∼ 0.02702

01010 0.75 (ee
0.25

)−1 ≈ 0.2769 ∼ 0.0055
01011 0.875 ∼ 0.2334 ∼ 2.4× 10−4

01100 1 ∼ 0.1923 (ee
ee

0

)−1 ≈ 2.6× 10−7

01101 1.25 ∼ 0.1544 ∼ 8.4× 10−17

01110 1.5 ∼ 0.1204 ∼ 1.7× 10−79

01111 1.75 ∼ 0.0908 ∼ 10−1758

10000 2 (e0)1 = 1 (e0)1 = 1
10001 2.5 (e0.125)1 ≈ 1.1331 (e0.25)1 ≈ 1.284
10010 3 (e0.25)1 ≈ 1.284 (e0.5)1 ≈ 1.6487
10011 3.5 ∼ 1.455 ∼ 2.117

10100 4 ∼ 1.6487 (ee
0
)1 ≈ 2.7183

10101 5 ∼ 1.8682 ∼ 3.6111
10110 6 ∼ 2.117 ∼ 5.2003
10111 7 ∼ 2.3989 ∼ 8.3062

11000 8 (ee
0
)1 ≈ 2.7183 (ee

e0

)1 ≈ 15.1533

11001 10 (ee
0.125

)1 ≈ 3.1054 ∼ 37.0085

11010 12 (ee
0.25

)1 ≈ 3.6111 ∼ 181.3313
11011 14 ∼ 4.2844 ∼ 4048.8237

11100 +∞ ∼ 5.2 (ee
ee

0

)1 ≈ 3.8× 106

11101 NaN ∼ 6.4769 ∼ 1.18× 1016

11110 NaN ∼ 8.306 ∼ 5.6387× 1078

11111 NaN ∼ 11.0108 ∼ 101758

when cj < aj , at which point n = j and h = cj/aj . If cj ≥ aj
for j = 0, . . . , l − 1, then n = l and h = f + ln(cl−1) [2].

Multiplication and division are straightforward [2]: with
extra manipulations of arguments we turn the operations into
addition or subtraction and therefore reuse the sequences
above. For example, if m > 0 then n > 0 and ϕ(X)ϕ(Y ) =
ϕ(Z) = eϕ(X−1)eϕ(Y−1) = eϕ(Z−1) allows to write ϕ(X −
1) + ϕ(Y − 1) = ϕ(Z − 1). We can then do the addition and
increase the level of Z − 1 by one. Further details are in [2].

Arithmetic for SLI systems requires a few modifications
since there is no level zero and the reciprocal sign has to
be taken into account. These modifications are described by
Clenshaw and Turner [3].

V. MATLAB SYMMETRIC LEVEL INDEX SLI.M

We have implemented a simulator for the SLI arithmetic
[3] in MATLAB. Version 0.1 is available on GitHub1. The file
sli.m defines a sli object, with the following properties.

• level_bits: number of bits assigned to the level (pl).
By default it is set to 2.

1https://github.com/north-numerical-computing/level-index-simulator.git

• index_bits: number of bits assigned to the index (pi).
By default it is set to 12.

• sign: sign bit. 0 for s(x) = 1 and 1 for s(x) = −1.
• reciprocal: 1 for r(x) = 1 and 0 for r(x) = −1.
• level: level, stored as binary64, limited to [1, 2pl ]. Since

it is a positive integer it could be stored as a 64-bit integer.
• index: index, stored as binary64, rounded to a fixed-

point representation with machine epsilon ε = 2−pi using
MATLAB’s round() (round-to-nearest ties-to-away, a
default rounding mode). This value could be stored as a
64-bit integer in fixed-point representation.

• value: a binary64 image of the stored LI number,
constructed using (5).

Below is an example use of sli in MATLAB.

>> x=sli
[...]
>> x=x.set_val(pi)
x =
sli with properties:

level_bits: 2
index_bits: 12

sign: 0
reciprocal: 1

level: 2
index: 0.135253906250000
value: 3.141899100868418

>> x*x
ans =
sli with properties:

level_bits: 2
index_bits: 12

sign: 0
reciprocal: 1

level: 2
index: 0.828369140625000
value: 9.870807937639510

There are two ways to define a sli object: by specifying
a binary64 quantity or by explicitly specifying the level and
index values. The first method uses (6) to convert a binary64
value to a LI value, with rounding to nearest for fitting the
index into the specified number of bits. See the example code
within the repository for more detail.

VI. EXPERIMENTS

Figures 3 and 4 show the accuracy of a 16-bit SLI arithmetic
sli-2.12 compared with the binary16 and bfloat16 floating-
point representations, respectively. The accuracy was measured
by comparing with binary64 in a narrow range of numbers
around zero with a step size between the adjacent input
samples of 10−5, computing the relative error. The step size
was chosen so that it is small enough to capture many values
but big enough to visualize the errors in a plot.

Figure 5 and 6 show the relative backward error for
matrix-vector multiplication Ax with A drawn from the two
distributions shown and x ∈ (0, 1)n for n = [10, 104].
Binary16 demonstrates higher accuracy, but it overflows when
A ∈ (0, 100)n×n whilst sli-2.12 continues computing. On the

https://github.com/north-numerical-computing/level-index-simulator.git
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Fig. 3. Relative accuracy of binary16 and a 16-bit level-index representation
compared with binary64.
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Fig. 4. Relative accuracy of bfloat16 and a 16-bit level-index representation
compared with binary64.

other hand bfloat16 does not overflow in this particular ex-
periment; sli-2.12 has better or equivalent accuracy compared
with bfloat16.
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Fig. 5. Backward error in Ax with binary16 and sli compared with binary64.

VII. CONCLUSION

SLI arithmetic simulator is presented which enables the
community to experimentally study this number system. In
v0.1 we implemented most of the operators2 for the sli ob-
jects. Operators mrdivide, mldivide, power, mpower,
and, or, and not are not yet implemented; the toolbox does
not at present fully work in Octave. We plan extensions in
the future versions of the toolbox. Our goal is for the toolbox
to act as an easy method for testing the accuracy of modern

2https://uk.mathworks.com/help/matlab/matlab oop/implementing-
operators-for-your-class.html
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Fig. 6. Backward error in Ax with bfloat16 and sli compared with binary64.

algorithms in SLI arithmetic which in turn may drive hardware
architects to have another look at its implementation.
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